Residual Galois representations of elliptic curves with image contained in the normaliser of a nonsplit Cartan

نویسندگان

چکیده

It is known that if $p>37$ a prime number and $E/\mathbb{Q}$ an elliptic curve without complex multiplication, then the image of mod $p$ Galois representation $$ \bar{\rho}_{E,p}:\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})\rightarrow \operatorname{GL}(E[p]) $E$ either whole $\operatorname{GL}(E[p])$, or \emph{contained} in normaliser non-split Cartan subgroup $\operatorname{GL}(E[p])$. In this paper, we show when $p>1.4\times 10^7$, $\bar{\rho}_{E,p}$ \emph{full} subgroup. We use to following result, partially settling question Najman. For $d\geq 1$, let $I(d)$ denote set primes for which there exists defined over $\mathbb{Q}$ multiplication admitting degree isogeny field $\leq d$. that, 1.4\times have I(d)=\{p\text{ prime}:p\leq d-1\}.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elliptic curves with nonsplit mod 11 representations

We calculate explicitly the j-invariants of the elliptic curves corresponding to rational points on the modular curve X+ ns(11) by giving an expression defined over Q of the j-function in terms of the function field generators X and Y of the elliptic curve X+ ns(11). As a result we exhibit infinitely many elliptic curves over Q with nonsplit mod 11 representations.

متن کامل

Galois Representations and Elliptic Curves

An elliptic curve over a field K is a projective nonsingular genus 1 curve E over K along with a chosen K-rational point O of E, which automatically becomes an algebraic group with identity O. If K has characteristic 0, the n-torsion of E, denoted E[n], is isomorphic to (Z/nZ) over K. The absolute Galois group GK acts on these points as a group automorphism, hence it acts on the inverse limit l...

متن کامل

Elliptic Curves with Surjective Adelic Galois Representations

Let K be a number field. The Gal(K/K)-action on the the torsion of an elliptic curve E/K gives rise to an adelic representation ρE : Gal(K/K) → GL2(Ẑ). From an analysis of maximal closed subgroups of GL2(Ẑ) we derive useful necessary and sufficient conditions for ρE to be surjective. Using these conditions, we compute an example of a number field K and an elliptic curve E/K that admits a surjec...

متن کامل

Mod 4 Galois Representations and Elliptic Curves

Galois representations ρ : GQ → GL2(Z/n) with cyclotomic determinant all arise from the n-torsion of elliptic curves for n = 2, 3, 5. For n = 4, we show the existence of more than a million such representations which are surjective and do not arise from any elliptic curve.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Algebra & Number Theory

سال: 2021

ISSN: ['1944-7833', '1937-0652']

DOI: https://doi.org/10.2140/ant.2021.15.747